RSS

Archivi tag: codice genetico

La biologia sintetica promette una rivoluzione: il codice della vita non sarà più lo stesso

SynBioBisogna ammetterlo, gli organizzatori del Carnevale della Biodiversità conoscono il gusto della provocazione. Dopo “Le dimensioni contano”, “Nicchie estreme: ai confini della realtà” e “Alieni tra noi”, questa volta i partecipanti hanno affrontato un tema ancor più originale, che li ha costretti a spremere le meningi e a mettere sul campo tutta la loro creatività e fantasia. Il titolo di questa edizione del carnevale, tornato dopo una lunga pausa, ha infatti una connotazione fantascientifica piuttosto che scientifica: “Ho visto cose.. La biologia dei mondi fantastici”. Non appena l’ho letto, nella mia testa è scattato il collegamento con la biologia sintetica, un settore che ho iniziato a conoscere da vicino qualche mese fa, durante la mia visita all’ETH di Basilea. Che cosa c’è infatti di più fantastico di una biologia fabbricata dall’uomo, che in natura non esiste? Dopotutto, fare biologia sintetica significa realizzare molecole e organismi che non sono mai esistiti, e che tuttavia sarebbero potuti esistere se l’evoluzione avesse preso un altro corso. Fare biologia sintetica è un po’ come sbirciare in un mondo immaginario, un mondo che per la maggioranza di noi sarà popolato da draghi, fate e supereroi, ma che per un biologo molecolare potrebbe ospitare forme di vita ancora più bizzarre. Organismi diversi da quelli che conosciamo non solo per il loro aspetto o per il loro genoma, ma addirittura per il codice genetico in base al quale sono stati programmati.

Codice geneticoOgni forma di vita di questo pianeta (a parte rare eccezioni) utilizza infatti lo stesso codice per trasformare in proteine funzionanti l’informazione genetica contenuta nel proprio DNA. E’ un codice a triplette, propriamente dette codoni, dove ogni tripletta di nucleotidi corrisponde a uno specifico aminoacido. Per esempio, se nel DNA c’è scritto AAA, la cellula inserirà nella catena della proteina nascente l’aminoacido lisina, e così via, tripletta dopo tripletta, finché la cellula non incappa in un codone di stop: lì il processo di traduzione termina e la nuova proteina può essere rilasciata. A dispetto dell’elevato numero di codoni possibili (64), gli aminoacidi comunemente a disposizione delle nostre cellule sono soltanto 20: significa che ogni aminoacido può essere codificato da più di un codone (tre codoni indicano un segnale di stop). Ma gli scienziati che si occupano di biologia sintetica non sono mai contenti di quello che l’evoluzione ha messo a punto nel corso di milioni di anni. In effetti, se solo potessimo convincere le cellule a utilizzare decine di altri aminoacidi diversi, potremmo ottenere proteine mai viste, anche con funzioni completamente nuove. Una prospettiva affascinante, non c’è dubbio, ma sorge un problema: se i 64 codoni sono già tutti prenotati, come si fa a cambiare il codice genetico senza che tutte le altre proteine, quelle naturali, vengano stravolte? Considerate che le cellule hanno le loro attività da portare avanti, e le proteine devono essere fatte bene, con tutti gli aminoacidi al posto giusto: se si prova ad alterare il significato di un solo codone, c’è il serio rischio che la cellula passi a miglior vita. Una soluzione al problema c’è, ma per capirla a fondo dovrete avere la pazienza di seguirmi mentre vi racconto più nel dettaglio il meccanismo della traduzione.

Fabbricare una proteina è un processo sofisticato nel quale intervengono diversi attori. Il ruolo del protagonista appartiene indubbiamente al ribosoma, un complesso macchinario composto da tre molecole di RNA e da più di 50 proteine. Spetta al ribosoma effettuare la sintesi vera e propria, andando a decodificare la sequenza nucleotidica dell’RNA messaggero in arrivo dal nucleo. I codoni vengono fatti scorrere, l’uno dopo l’altro, pronti per essere letti. Ed è qui che interviene l’altra molecola decisiva in questo processo, la chiave di lettura che consente al ribosoma di interpretare l’informazione portata dal messaggero e trasformarla in una catena di aminoacidi: sono i tRNA (o RNA transfer). Questi RNA di trasporto raggiungono il ribosoma e vanno ad appaiarsi con il codone su cui questo sta transitando. Se il codone si lega di buon grado all’anticodone portato dal tRNA, ecco che avviene la magia e il tRNA cede il suo prezioso carico: un aminoacido, che viene immediatamente trasferito alla catena proteica nascente. Il processo va avanti finché il ribosoma non incontra uno dei tre codoni di stop (UAA, UAG, UGA), che non riescono ad appaiarsi ad alcun tRNA. La traduzione funziona perché ogni codone può appaiarsi a un solo tRNA, e quel tRNA porterà sempre con sé lo stesso identico aminoacido. Già, ma una volta compiuto il loro dovere, che fanno i tRNA? Bussano alla porta degli enzimi amminoacil-tRNA sintetasi, che li ricaricano consegnando loro un nuovo aminoacido. Esistono 20 tipi diversi di questo enzima, ognuno competente per uno specifico aminoacido. Per cambiare il codice genetico e scriverne uno nuovo occorre dunque intervenire su tutti e tre questi componenti: il ribosoma, i tRNA e l’aminoacil-tRNA sintetasi. E’ quello che stanno cercando di fare all’Università di Cambridge, nel gruppo di ricerca guidato da Jason W. Chin. Il primo passo è stato creare un ribosoma alternativo a quello naturale, vediamo come hanno fatto.

jasonchin

ResearchBlogging.orgChin e colleghi hanno fatto le cose in grande, e hanno deciso che il codice a triplette non bastava. Se proprio vogliamo scrivere un codice nuovo di zecca – hanno pensato – perché non farne uno con dei codoni di quattro lettere? Il vantaggio è evidente: si avrebbero a disposizione ben 256 codoni da riempire con gli aminoacidi più bizzarri. La prima cosa da fare per costruire un ribosoma del genere è impedire che il nostro esperimento molecolare interferisca con il ribosoma naturale, che deve continuare a svolgere correttamente il proprio lavoro. Sembrerà un accorgimento banale, ma non lo è affatto: per riuscire in questo compito, i ricercatori inglesi hanno dovuto mettere a punto un disegno sperimentale molto astuto, sfruttando la cosiddetta “sequenza di Shine-Dalgarno”. Questa sequenza si trova all’inizio degli RNA messaggeri batterici, e funziona come segnale di riconoscimento per i ribosomi. L’idea di Chin e colleghi era di cambiare in qualche modo questa sequenza, in modo da realizzare dei messaggeri artificiali che fossero invisibili ai ribosomi. Hanno quindi prodotto una serie di possibili varianti di questa sequenza e l’hanno inserita in un gene ad hoc, che codificava per due proteine fuse insieme (capirete presto perché): la prima proteina neutralizzava l’effetto di un antibiotico (cloramfenicolo), la seconda era tossica in presenza di 5-fluorouracile (5-FU). Somministrando quest’ultima molecola, il team di Chin ha dato inizio alla strage: tutte le cellule che nel messaggero artificiale avevano una sequenza di Shine-Dalgarno riconosciuta dal ribosoma producevano la proteina tossica e morivano. I ricercatori erano così riusciti a scoprire quali sequenze di Shine-Dalgarno non piacevano ai ribosomi naturali. Sono state queste sequenze il primo importante passoverso la creazione di un sistema di traduzione alternativo, che non interferisse con quello originale. Ma ora bisognava realizzare un ribosoma nuovo che quelle sequenze, invece, fosse in grado di riconoscerle. I ricercatori hanno fatto anche questo. Hanno fatto sintetizzare alle cellule dei ribosomi leggermente differenti rispetto a quello di partenza, e hanno poi selezionato quelli che casualmente riuscivano a riconoscere una delle sequenze di Shine-Dalgarno alternative (per fare lo screening questa volta hanno usato l’antibiotico cloramfenicolo). Per sopravvivere all’antibiotico le cellule dovevano avere un gran colpo di fortuna: l’unica salvezza per loro era possedere la coppia messaggero/ribosoma che consentiva la produzione della proteina salvavita. Beh, qualcuna ce l’ha fatta: su un miliardo di combinazioni testate, tre hanno avuto successo. E con questo risultato, i ricercatori hanno potuto sperimentare liberamente sul loro ribosoma alternativo, senza intaccare il normale processo della traduzione. Ora potevano iniziare a fare esperimenti in tranquillità, nel tentativo di creare un nuovo codice della vita basato su codoni di quattro lettere.

A onor del vero, in passato erano già stati condotti esperimenti in cui si cercava di introdurre aminoacidi non naturali sfruttando le quadriplette al posto delle triplette, ma con i ribosomi naturali questa operazione risultava complicata: i tRNA speciali in grado di appaiarsi a codoni di quattro lettere fanno fatica a entrare nel ribosoma, e d’altra parte ogni tentativo di aumentare l’efficienza di traduzione rischiava di danneggiare in modo letale tutte le altre proteine. Con il ribosoma alternativo messo a punto dal gruppo di Jason W. Chin non c’era più questo pericolo. I ricercatori hanno quindi testato oltre un miliardo di ribosomi leggermente diversi tra loro, con l’obiettivo di trovarne uno che fornisse un alloggio più comodo per i tRNA speciali. Ancora una volta hanno costretto le cellule a fabbricare la proteina che dava resistenza al cloramfenicolo, ma in questo caso il gene che la codificava aveva in un certo punto un codone di quattro lettere, che poteva essere letto solo se il ribosoma riusciva ad ospitare un apposito tRNA speciale introdotto dai ricercatori. E’ bastato aggiungere un po’ di antibiotico per fare fuori tutte le cellule prive di questo superpotere e scovare il ribosoma in grado di leggere i codoni da quattro lettere tanto quanto quelli da 3: lo hanno chiamato Ribo-Q1.

Orthogonal_TranslationFinalmente abbiamo dunque il ribosoma che fa per noi. Il problema che hanno dovuto affrontare i ricercatori di Cambridge riguardava a questo punto i tRNA. Posso anche creare dei tRNA speciali che si appaino alle quadriplette portando con sé degli aminoacidi non naturali, ma quegli aminoacidi qualcuno deve fornirli. Come ho scritto all’inizio, questo compito normalmente è svolto dagli enzimi amminoacil-tRNA sintetasi, ma se voglio usarli per ricaricare anche i miei tRNA speciali devo stare bene attento che non vadano a interferire con i tRNA normali. Per questi enzimi vale un po’ lo stesso discorso fatto per i ribosomi: il nuovo sistema di traduzione deve essere alternativo a quello naturale in tutto e per tutto, o in termini più tecnici deve essere ortogonale. Fortunatamente, la natura ci viene in soccorso, aiutandoci a risolvere almeno parzialmente il problema. Si dà il caso, infatti, che alcuni microrganismi produttori di metano abbiano sviluppato delle coppie sintetasi/tRNA che, inserite nel batterio Escherichia coli, non interferiscono con il suo processo di traduzione originario. Sfruttando questa proprietà, i ricercatori sono riusciti a far inserire al ribosoma Ribo-Q1 tutta una serie di aminoacidi non naturali.

Missione compiuta dunque? Non proprio. In natura esistono solo due coppie sintetasi/tRNA realmente ortogonali al sistema di traduzione di E. coli: sono le uniche che non disturbano la normale attività di traduzione, e la sola cosa che posso fare è cambiare i due aminoacidi associati a queste due coppie. Questo significa che è impossibile inserire in una proteina più di due aminoacidi non naturali! Ecco dunque la vera sfida per le prossime ricerche: se vogliamo produrre polimeri completamente non naturali, bisogna escogitare strategie per sviluppare nuove coppie sintetasi/tRNA disponibili ad accettare altri aminoacidi. Se i biologi sintetici riusciranno nell’impresa, in futuro potremmo fare esperimenti molto interessanti e scoprire che, con qualche aminoacido in più a disposizione, la vita potrebbe evolvere funzioni nuove e imprevedibili, funzioni che per la biologia naturale sono fuori portata. Ma qui si entra nel regno della fantascienza, anzi, si entra nella biologia dei mondi fantastici. Trovate gli altri contributi al Carnevale della Biodiversità sul blog Mahengechromis. Buona lettura!


Wang, K., Schmied, W., & Chin, J. (2012). Reprogramming the Genetic Code: From Triplet to Quadruplet Codes Angewandte Chemie International Edition, 51 (10), 2288-2297 DOI: 10.1002/anie.201105016

 
10 commenti

Pubblicato da su 12 dicembre 2012 in Scienza, Tecnologia, Varie

 

Tag: , , , , , , ,

Gli hacker del genoma

Il nostro DNA, così come quello di tutte le specie viventi, è composto da una lunga catena di mattoncini chiamati nucleotidi. I nucleotidi possono presentarsi in quattro forme all’interno delle nostre cellule: adenina (A), citosina (C), guanina (G) e timina (T). Ogni singola proteina che fabbrichiamo è codificata nel nostro genoma secondo uno schema che si basa sulle triplette: gli elementi fondamentali delle proteine (gli aminoacidi) sono infatti determinati da specifiche triplette di nucleotidi. Se ad esempio la cellula legge AAA, sa che in quel punto della proteina dovrà inserire una lisina, se legge TTC sa che dovrà inserire una fenilalanina. E’ il famoso codice genetico, il codice che associa a ogni tripletta sul DNA (o codone) uno specifico aminoacido.

Non serve una laurea in statistica per calcolare il numero dei possibili codoni (e quindi il numero di possibili aminoacidi) ottenibili con quattro nucleotidi: sono 4 elevato alla terza, cioè 64.

La cosa interessante è che gli aminoacidi delle nostre cellule, però, non sono 64, ma soltanto 20: il codice genetico è infatti degenerato, esistono cioè più triplette che codificano per lo stesso aminoacido. Ovviamente ci sono delle ragioni evolutive alla base di tutto ciò, ma pensate per un attimo a quante possibili nuove proteine potremmo realizzare avendo a disposizione 64 mattoncini diversi invece che 20!

Deve essere passato un pensiero del genere nella testa di Farren Isaacs e dei suoi colleghi, quando hanno iniziato il lavoro che li ha portati sull’ultimo numero di Science. Gli autori hanno dimostrato di poter sostituire, nel genoma del batterio Escherichia coli, tutti i codoni TAG con un codone sinonimo (TAA). Le due triplette non codificano in realtà per un aminoacido, ma piuttosto per un segnale di stop: quando la cellula li trova, sa che la proteina è terminata. Poiché entrambi i codoni hanno lo stesso significato, i batteri avrebbero dovuto vivere serenamente senza grossi traumi. Ed è proprio ciò che è accaduto.

ResearchBlogging.orgPer arrivare a questo risultato gli scienziati hanno dovuto fare le cose gradualmente, seguendo una procedura laboriosa che combinava due tecniche dall’acronimo simile: MAGE e CAGE. Con la prima, messa a punto dallo stesso gruppo due anni fa, hanno creato 32 ceppi di Escherichia coli che avevano ciascuno un diverso set di codoni mutati, 10 codoni per la precisione. La seconda tecnica ha permesso di mettere insieme tutte le mutazioni, sfruttando il fatto che i batteri possono scambiarsi dei pezzi di DNA (è il fenomeno della coniugazione batterica). La CAGE è una specie di fase eliminatoria nei tornei di calcio: si parte dai sedicesimi di finale (32 ceppi con 10 mutazioni l’uno), si passa agli ottavi (16 ceppi con 20 mutazioni), ai quarti (8 con 40), alle semifinali (4 con 80) e alla finale (2 con 160). Il ceppo “vincitore” si ritroverà quindi con tutti i suoi 314 codoni TAG sostituiti dal codone TAA.

Interessante – direte voi – ma a che serve tutta questa trafila? Tanto per cominciare, serve a far invidia all’altro grande nome della biologia sintetica Craig Venter, che – immagino un po’ stizzito – ha già puntualizzato che “loro i genomi li scrivono da zero”. Battute a parte, le possibili applicazioni di questo lavoro non mancano. La tripletta eliminata dal genoma potrebbe essere utilizzata ad esempio per codificare un aminoacido diverso dai 20 standard: questo favorirebbe la creazione di nuove molecole farmacologicamente attive, appartenenti a classi completamente nuove rispetto ai farmaci a cui siamo abituati. In un lontano futuro, poi, potremmo ad esempio realizzare esseri viventi resistenti ai virus. Quando invadono le cellule, i virus schiavizzano l’ospite costringendolo a lavorare duramente per fabbricare le sue proteine; ma se l’ospite in questione ha imparato un codice genetico diverso, le proteine risultanti saranno tutte sballate e completamente inutili per l’invasore.

Image credit: Harry Campbell

Altri link:


Isaacs, F., Carr, P., Wang, H., Lajoie, M., Sterling, B., Kraal, L., Tolonen, A., Gianoulis, T., Goodman, D., Reppas, N., Emig, C., Bang, D., Hwang, S., Jewett, M., Jacobson, J., & Church, G. (2011). Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement Science, 333 (6040), 348-353 DOI: 10.1126/science.1205822

 
3 commenti

Pubblicato da su 16 luglio 2011 in Scienza, Tecnologia

 

Tag: , , , , , , ,

“The Gene Code” – Prima parte

Our planet is bursting with life.

Think at the bewildering diversity, everything from a 10 ton tree to a tiny single-celled bacterium smaller than a fleck of dust.

Life thrives 7 miles down at the bottom of the deepest oceans, and 3 miles above sea level.

Everywhere we look, from the hottest desert to frozen volcanoes, we find living organisms.

And every single one of those organisms – in fact every single living thing that ever existed on Earth – has one thing in common, and it’s this: DNA.

Inizia così The Gene Code, il bellissimo documentario sul genoma umano che la BBC sta trasmettendo in questi giorni. Nella prima puntata, Adam Rutherford ci accompagna alla scoperta dei misteriosi eventi che hanno guidato la nostra evoluzione, eventi che hanno lasciato le loro tracce nel nostro codice genetico. Purtroppo è in lingua inglese, e non sono per niente convinto che vedremo la versione italiana nei prossimi mesi: vi consiglio comunque di provare a guardarlo, Adam parla molto lentamente e si capisce quasi tutto. E poi credetemi, ne resterete affascinati.




 
Lascia un commento

Pubblicato da su 22 aprile 2011 in Educational, Scienza, Varie

 

Tag: , , , , , , , ,

Interazioni geni-ambiente: impariamo dal lievito

“Scoperto il gene della stupidità” – “Individuato il gene della miopia” – “Trovato il gene del mal di testa” – “Brutti voti a scuola? Colpa dei geni difettosi”. Sono solo alcune delle notizie più recenti che sono apparse sui giornali nelle scorse settimane. Molto spesso si tratta di titoli esagerati, scritti ad hoc per catturare l’attenzione, e la realtà è ben diversa: nella stragrande maggioranza dei casi, infatti, il DNA non determina in modo assoluto il nostro destino. A questo proposito, c’è un’espressione che rende bene il concetto dell’interazione tra i geni e l’ambiente: i geni caricano la pistola, ma l’ambiente preme il grilletto. Quello che c’è scritto nel nostro codice genetico, infatti, rappresenta solo una parte del rischio effettivo di ammalarsi di una certa patologia: all’equazione mancano almeno due termini importanti, il background genetico e appunto l’ambiente, lo stile di vita. Il background genetico è quello che distingue ad esempio un asiatico da un africano, mentre fare sport o fumare sono due stili di vita che chiaramente vanno a condizionare il risultato finale. La stessa variante genetica (vedi “il gene della stupidità”) può produrre i suoi effetti solo in un certo ambiente, oppure solo nelle persone appartenenti a un particolare gruppo etnico.

La faccenda è quindi complessa. Purtroppo, però, non è affatto semplice allestire un esperimento che ci dica come tutte queste variabili interagiscono tra loro, almeno per quanto riguarda l’uomo. E’ stato molto più facile per un gruppo di ricerca del Missouri analizzare questo complicato sistema in lievito: è una specie molto diversa, chiaramente, ma è un perfetto esempio per capire meglio la questione. Gli autori del lavoro, pubblicato su PLoS Genetics, hanno valutato l’efficienza di sporulazione di cellule di lievito in 8 tipi di terreni diversi, utilizzando linee il cui DNA differiva per il background generale oppure per quattro singole posizioni modificate una alla volta. Lo so, il disegno sperimentale è piuttosto complicato, cercherò di spiegarmi meglio.

Prendete due genomi di lievito diversi l’uno dall’altro e chiamateli Oak e Vineyard: sono i due diversi background genetici. Dopodiché, in questi genomi considerate quattro posizioni precise per le quali esistono due alleli, cioè due possibili varianti, che hanno un certo effetto sull’efficienza di sporulazione (la sporulazione è semplicemente una forma di riproduzione).

Ci saranno quindi 16 possibili combinazioni alleliche per queste quattro posizioni, che inserite nei due background genetici diventano 32 linee cellulari differenti. Mettetele in otto ambienti (terreni di coltura) diversi e calcolate l’efficienza di sporulazione. Questo è più o meno quello che hanno fatto i ricercatori americani, ed ecco qui a sinistra quello che hanno ottenuto.

Ogni barra orizzontale rappresenta una delle 32 linee di lievito, mentre le colonne sono i vari terreni utilizzati. L’intensità del colore è direttamente proporzionale all’efficienza di sporulazione.

Si vede chiaramente che le linee orizzontali non sono colorate in modo uniforme: significa che lo stesso DNA può produrre effetti diversi a seconda del terreno di coltura su cui crescono le cellule. Insomma, anche se un certo allele è in linea di massima dannoso, il modo in cui si manifesta cambia decisamente in funzione dell’ambiente: riuscite a vedere l’analogia con noi esseri umani?

Guardate ora questo grafico. A sinistra c’è un background genetico, a destra c’è l’altro. Se ci concentriamo sul background genetico di sinistra (Oak) e osserviamo l’effetto dell’allele rsf1, notiamo che esso provoca un abbassamento dell’efficienza di sporulazione soltanto quando le cellule crescono su essudato e su succo d’uva: nel terzo terreno (pallino nero), l’allele rsf1 non sembra produrre praticamente nessun effetto.

Visto? Stessi alleli, stesso background genetico, DNA identico in tutto e per tutto: eppure, quando cambia l’ambiente, cambia il risultato finale. Non solo: se confrontate il pannello di sinistra con quello di destra, scoprirete che l’efficienza di sporulazione varia anche quando cambiamo il background genetico e teniamo fisso tutto il resto. E non finisce qui, perché gli scienziati scoprono che due singoli alleli possono anche interagire tra di loro, producendo un effetto diverso, ma questo accade solo quando si trovano in un certo ambiente o in un preciso background genetico.

Come potete vedere le relazioni che si vengono a formare tra il DNA e l’ambiente sono innumerevoli, e tutti questi fattori contribuiscono a determinare, ad esempio, se ci ammaleremo di questa o quest’altra malattia. Nel caso di esseri umani non si parlerà più di terreni di coltura, ovvio, ma piuttosto di dieta, stile di vita, ambiente familiare in cui si cresce: tutto questo va a sommarsi ai nostri geni, facendo emergere o meno le predisposizioni che ci portiamo dentro, scritte nel DNA. Per gli scettici ho ancora due grafici da mostrare: rappresentano due modelli matematici che gli autori realizzano per tentare di predire l’efficienza di sporulazione. In alto c’è il modello costruito partendo dai soli alleli, più sotto c’è quello realizzato considerando anche l’informazione relativa all’ambiente e al background genetico: mentre nel primo caso il modello non indovina quasi mai, nel secondo è precisissimo. Concludendo: se avete il “gene della stupidità”, studiate. Che è meglio.


Gerke J et al. “Gene-Environment Interactions at Nucleotide Resolution” PLoS Genetics 2010, 6(6): e1001144

 
5 commenti

Pubblicato da su 1 ottobre 2010 in Genetica personale, Medicina, Salute, Scienza

 

Tag: , , , , , , , , , , , ,

 
%d blogger cliccano Mi Piace per questo: