La meningite in Toscana (e perché non viene dall’Africa)

Chi ha portato la meningite in Toscana? Nelle ultime settimane se ne è parlato moltissimo sui social network. A volte in modo pacato, altre volte con toni molto accesi, in ogni caso non sempre con la necessaria precisione. Se avete seguito il dibattito, è possibile che vi siate già fatti la vostra idea sull’argomento, ma forse alcuni di voi sono ancora confusi. Chi ha un minimo di dimestichezza con i social sa che le discussioni online sono spesso difficili da seguire, e in mezzo al caotico inseguirsi dei commenti e dei “mi piace” capita che alla fine non si riesca più a distinguere i fatti dalle opinioni. Lo scopo di questo post è cercare di rispondere, dati alla mano, alla domanda di partenza, evidenziando alcuni aspetti che nei dibattiti di questi giorni sono stati trascurati. Se avrete la pazienza di leggere fino in fondo, forse imparerete anche voi, come me, qualcosa di nuovo e interessante (anche nel caso in cui una risposta ce l’abbiate già).

La meningite è un’infiammazione delle meningi, cioè le membrane che rivestono e proteggono il cervello e il midollo spinale. Ne esistono forme lievi, come quelle di origine virale, e forme più gravi e addirittura letali, perlopiù batteriche. Sono diversi i batteri in grado di causare la meningite. I principali sono Neisseria meningitis (meningococco), Streptococcus pneumoniae (pneumococco) e Haemophilus influenzae (emofilo) di tipo B. Fino agli anni 90, era quest’ultimo a causare la maggior parte dei casi di meningite nei bambini con meno di cinque anni, ma in seguito all’introduzione del vaccino esavalente i numeri si sono notevolmente ridotti. Al giorno d’oggi, la maggior parte delle meningiti in Italia sono da pneumococco, mentre le meningiti da meningocco sono più rare. I casi di meningite riscontrati in Toscana negli ultimi due anni appartengono a quest’ultima categoria, e destano particolare preoccupazione perché si stanno presentando in numero più alto rispetto ai casi registrati in questa regione negli anni precedenti. Al fine di sgombrare subito il campo da ogni dubbio, in Italia non esiste nessuna epidemia di meningite: a livello nazionale, infatti, i numeri sono in linea con quelli rilevati in passato (1479 nel 2014, 1815 nel 2015, 1376 nel 2016). L’anomalia riguarda esclusivamente la regione Toscana, per la quale si può parlare, tecnicamente, di focolai epidemici. La peculiare situazione toscana è ben illustrata da questa figura, che riporta l’incidenza del meningococco come numero di casi su 100000 abitanti (figura estratta da Stefanelli et al, 2016). Nello specifico, il batterio coinvolto in questo caso è un meningococco di tipo C.

toscana

Il meningococco Neisseria meningitis, infatti, può essere classificato in diversi sierogruppi, a seconda delle molecole (antigeni) che il batterio presenta sulla sua capsula polisaccaridica, cioè il rivestimento esterno protettivo che è considerato il suo maggiore fattore di virulenza. L’identificazione degli antigeni presenti sulla capsula del batterio può essere fatta con tecniche standard di microbiologia come i saggi di agglutinazione, dove si usano vari anticorpi per “sondare” la superficie della cellula batterica, oppure tramite PCR, in cui si sequenziano direttamente i geni della capsula. I sierogruppi in grado di causare epidemie sono A, B, C, X, Y, W. Ognuno di questi ha una diffusione geografica caratteristica: in Italia, ad esempio, prevalgono il tipo B e il tipo C. Lo evidenzia molto bene la tabella seguente, estratta dagli ultimi dati di sorveglianza sulle malattie batteriche invasive (aggiornati a novembre 2016). Si nota, tra l’altro, il sorpasso del sierogruppo C sul B, avvenuto nel 2015 in concomitanza con l’anomalia toscana.

sorveglianza

L’identificazione del sierogruppo è sicuramente un passaggio fondamentale, utilissimo ad esempio per capire quale vaccino utilizzare per arrestare eventuali epidemie. Possiamo però fare molto di più: un ceppo di meningococco, infatti, può anche essere classificato in modo più preciso grazie a una tecnica molto usata in microbiologia, il sequenziamento MLST (Multi Locus Sequence Typing). In pratica, si vanno a sequenziare delle piccole porzioni di sette diversi geni, che nell’insieme forniscono una sorta di identikit del ceppo batterico. Una classificazione così fine permette di monitorare in modo molto preciso la diffusione di un patogeno, e in alcuni casi di ipotizzarne la sua origine geografica. Proprio grazie alla tecnica MLST è stato possibile identificare con precisione il ceppo responsabile dei casi di meningite in Toscana: si tratta di ST-11, un ceppo batterico che circola in Europa ormai da diversi anni.

Sembrerà incredibile, ma le discussioni che in questi giorni hanno infiammato i social network ruotavano attorno a questo concetto molto tecnico dei ceppi batterici. Una questione per addetti ai lavori, si direbbe, ma che in questa circostanza ha provocato accesi dibattiti e che alla fine si è allargata, commento dopo commento, fino a trasformarsi nell’eterna domanda: la scienza è democratica? Tranquilli, non parlerò di questo argomento, altri più competenti di me lo hanno già fatto e rischierei solo di annoiarvi. Quello che mi preme sottolineare è il vero motivo per cui gli immigrati africani non possono essere ritenuti in alcun modo responsabili dei casi di meningite che si sono verificati in Toscana, una tesi che è circolata per diversi giorni in rete, ma – come vedremo – priva di ogni fondamento. Alcuni esperti, tra cui il noto medico Roberto Burioni, hanno tentato subito di smontare questa teoria, affermando sostanzialmente che gli immigrati non c’entrano nulla con questa storia perché il sierogruppo C (responsabile dei casi in Toscana) non è fra quelli diffusi in Africa. Per molti queste parole hanno chiuso definitivamente la questione, e la verità unanimemente accettata da giornali e TV è diventata questa: il meningococco C in Africa non esiste. Il problema è che, forse per esigenze di semplificazione, gli esperti avevano omesso un’informazione importante, che essendo reperibile in rete su siti affidabili come quello dell’OMS è venuta inevitabilmente a galla senza timore di essere smentita: il meningococco C, in Africa, esiste eccome. In particolare, secondo un bollettino dell’OMS, il meningococco di tipo C è stato, nel 2015, la prima causa di meningite batterica nella cosiddetta “meningitis belt”, ossia la fascia di Paesi subsahariani che va dal Senegal all’Etiopia. Fino a qualche anno fa, come dimostra il grafico seguente (preso dal sito dell’OMS), il meningococco A era il sierogruppo dominante nell’Africa subsahariana, mentre il tipo C era praticamente inesistente, esattamente come si diceva all’inizio. Nel 2010, però, è partita una vaccinazione di massa per il meningococco A che ha modificato radicalmente il panorama della meningite in Africa: il meningococco A (in rosso) è progressivamente scomparso (sì, perché i vaccini funzionano!), lasciando il posto ad altri sierogruppi come il W (in blu), o alle meningiti da pneumococco (in verde). L’anomalia del 2015 è dovuta essenzialmente a grandi epidemie avvenute in Niger e in Nigeria, che hanno fatto salire alle stelle le statistiche del meningococco C (nel grafico in azzurro).

meningite

I numeri sono inequivocabili, comprensibile quindi che a molti sia venuto il dubbio: ma siamo proprio sicuri che i migranti non c’entrino nulla? Ebbene, la risposta ancora una volta è sì: i migranti non c’entrano nulla. E non perché il tipo C in Africa non esista, ma perché il meningococco C africano è completamente diverso da quello toscano. La risposta che cerchiamo, infatti, ce la fornisce la classificazione fine, quella ottenuta con la tecnica MLST: mentre il ceppo toscano è denominato ST-11, il ceppo responsabile delle grandi epidemie africane del 2015 è stato chiamato ST-10217 ed è un ceppo completamente nuovo, mai rilevato in precedenza. Stiamo parlando quindi sempre di meningite, e sempre da meningococco di tipo C; quando si va a guardare l’identikit più preciso, però, risulta evidente che siamo di fronte a due ceppi batterici differenti. Questi casi di meningite, meglio ripeterlo ancora una volta, non hanno nessuna relazione con le epidemie africane.

L’epidemiologia è una faccenda complicata. I batteri si spostano insieme a noi: salgono sui barconi dei migranti e sugli aerei dei turisti, si moltiplicano sui treni del mattino affollati di pendolari, e a volte – come nel caso del meningococco – viaggiano in incognito, trasportati da inconsapevoli portatori sani. Come spesso accade, per conoscere la verità tocca andare in fondo alle questioni. È un processo faticoso che a volte ti porta ad affrontare questioni tecniche molto complesse e ti costringe a mettere in discussione i tuoi preconcetti, ma alla fine ne vale la pena.

 


 

Ringrazio Roberta Villa, Riccardo Gallina e il professor Pier Luigi Lopalco per i preziosi suggerimenti, le informazioni e i link che hanno condiviso con me.

Informazioni generali sulla meningite:

Risorse utili sulla situazione italiana:

Risorse utili sulla situazione africana:

 

Annunci

Variabilità genetica: c’è anche la Toscana nel progetto HapMap 3

Se prendete due esseri umani qualsiasi e leggete il loro genoma, scoprirete che le differenze sono minime (0,1%): ogni 1000 nucleotidi c’è una differenza. Tuttavia, è proprio questa piccolissima frazione di variabilità a spiegare perché non esiste una persona uguale all’altra: ognuno di noi ha i propri tratti fisici caratteristici, la propria predisposizione a certe malattie, la propria sensibilità a un farmaco piuttosto che a un altro. Tutto questo dipende da quello 0,1% di variabilità, che sebbene sembri un piccolo numero, in realtà non lo è affatto: se si considera che il genoma umano è grande circa 3 miliardi di paia di basi, si può calcolare facilmente che questa variabilità si manifesta in almeno 3 milioni di posizioni diverse.

Queste variazioni non sono una indipendente dall’altra: vengono ereditate in blocchi, chiamati aplotipi. Da qui prende il nome il progetto internazionale HapMap, nato nel 2002 per realizzare una mappa il più possibile completa della variabilità presente nel genoma umano. La “mappa degli aplotipi” fa la parte del leone nell’ultimo numero di Nature: la nuova versione (la terza) contiene importanti novità. Al fine di aumentare la risoluzione, è stata infatti arricchita con sette nuove popolazioni: va da sè che più gli individui sono distanti da un punto di vista evolutivo, maggiori sono le differenze che si possono scoprire. Nell’HapMap 1 e 2, erano state esaminate 4 popolazioni: Yoruba nigeriani (YRI), giapponesi di Tokyo (JPT), cinesi Han (CHB) e un gruppo di abitanti dello Utah con origini europee (CEU). La terza versione comprende 7 nuove etnie: cinesi di Denver (CHD), indiani Guajarati di Houston (GIH), africani del sud-ovest degli Stati Uniti (ASW), Luhya (LWK) e Maasai (MKK) del Kenya, messicani di Los Angeles (MXL) e – udite udite – anche un gruppo di toscani (TSI). I ricercatori hanno analizzato più di 1000 campioni derivanti dalle varie popolazioni, esaminando circa 1,6 milioni di SNPs. Non solo, oltre a questi polimorfismi che sono già presenti comunemente sui chip, si è cercato di individuare delle variazioni nuove andando a sequenziare in 692 campioni dieci tratti di DNA, che in totale coprivano una distanza di circa un milione di paia di basi: la strategia del sequenziamento ha permesso di evidenziare varianti non comuni, rare o addirittura “private” (cioè presenti soltanto in un singolo individuo).

Ma cosa possiamo dire della variabilità genetica che c’è invece tra le diverse etnie? Guardate questo grafico. All’aumentare del numero di individui analizzati, cresce ovviamente il numero di SNPs, cioè il numero di varianti che si riescono a individuare. Le popolazioni, però, sono chiaramente divise in due gruppi: più in alto ci sono gli africani, più sotto tutti gli altri. Questo conferma un dato importante che già era noto in passato: il DNA degli africani è molto più variegato di quanto non lo sia quello del resto del mondo.


E i nostri toscani? A chi assomigliano di più? La risposta la dà questo istogramma, che evidenzia il livello di similarità tra popolazioni. La barra nera indica quanto sono simili gli individui appartenenti alla stessa popolazione: ovviamente, è la barra più alta in tutti i casi. Per quanto riguarda i Toscani (TSI), la popolazione geneticamente più vicina è la CEU (cioè il gruppo di europei che abita nello Utah): non c’è da sorprendersi, sono le uniche due popolazioni di origine europea presenti nel dataset. Qualcosa di più interessante è emerso invece da un’altra analisi fatta dai ricercatori, quella che va a cercare nei geni i segni della selezione naturale positiva, cioè le tracce lasciate per così dire dall’evoluzione. Dai risultati, pare che i Toscani abbiano sviluppato dei geni particolari coinvolti nellla pigmentazione, nella guarigione delle ferite e nel senso dell’olfatto: queste varianti si sono formate spinte da una necessità che dipende probabilmente dall’ambiente e dalla cultura del luogo di origine, e sarà quindi interessante provare a scoprire quali siano le spinte evolutive che ha subito la popolazione toscana. Comunque, poiché la TSI è l’unico gruppo di italiani presenti nel dataset, è possibile che questo discorso resti valido per l’Italia nel suo complesso.

Dobbiamo sempre tenere a mente che lo studio della variabilità contenuta nel genoma umano è il primo passo per identificare le relazioni tra specifiche varianti e tratti fenotipici. Quando un’azienda di personal genomics testa il vostro DNA e vi dice che avete una predisposizione a una certa malattia è perché nel vostro genoma c’è un polimorfismo che è stato visto essere statisticamente più presente nei soggetti con quella patologia; se però quella posizione del DNA non fosse stata identificata come un punto di variabilità da parte di consorzi come HapMap, essa non sarebbe stata mai neppure presa in considerazione. Ecco perché è importante scoprire un numero sempre maggiore di questi polimorfismi, senza accontentarsi di quelli più frequenti: più varianti si conoscono, migliori studi di associazione si potranno fare in futuro.

The International HapMap 3 Consortium “Integrating common and rare genetic variation in diverse human populations” Nature 2010, 467: 52-58